The Return Map for a Planar Vector Field with Nilpotent Linear Part: A Direct and Explicit Derivation
نویسنده
چکیده
Using a direct approach the return map near a focus of a planar vector field with nilpotent linear part is found as a convergent power series which is a perturbation of the identity and whose terms can be calculated iteratively. The first nontrivial coefficient is the value of an Abelian integral, and the following ones are explicitly given as iterated integrals.
منابع مشابه
The First Return Map for Planar Vector Fields with Nilpotent Linear Part with a Center or a Focus
The return map for planar vector fields with nilpotent linear part (having a center or a focus and under an assumption generically satisfied) is found as a convergent power series whose terms can be calculated iteratively. The first nontrivial coefficient is the value of an Abelian integral, and the following ones are explicitly given as iterated integrals built with algebraic functions.
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملIntegrable Analytic Vector Fields with a Nilpotent Linear Part
We study the normalization of integrable analytic vector fields with a nilpotent linear part. We prove that such an analytic vector field can be transformed into a certain form by convergent transformations when it has a non-singular formal integral. In particular, we show that a formally linearizable analytic vector field with a nilpotent linear part is linearizable by convergent transformatio...
متن کاملThe Conjecture of Nowicki on Weitzenböck Derivations of Polynomial Algebras
The Weitzenböck theorem states that if ∆ is a linear locally nilpotent derivation of the polynomial algebra K[Z] = K[z1, . . . , zm] over a field K of characteristic 0, then the algebra of constants of ∆ is finitely generated. If m = 2n and the Jordan normal form of ∆ consists of 2 × 2 Jordan cells only, we may assume that K[Z] = K[X,Y ] and ∆(yi) = xi, ∆(xi) = 0, i = 1, . . . , n. Nowicki conj...
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009